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Abstract. The free energy associated with a bounding surface of an electrolytic solution 
is derived as an expansion in the screening length K - ~  with resulls for the first four 
orders. This new method makes use of a connection with heat wntent asymptotics, a 
recent development in the mathematics literature. 

1. Introduction 

A topic of current interest is the calculation of the free energy associated with a 
bounding membrane of an electrolytic solution [l-31. The free energy may be derived 
directly from the electrostatic potential $ which in the weak field limit (linearized 
theory) is obtained as a solution to the Debye-Huckel equation 

where n is the inverse screening length of the electrolyte. Equation (1) is also 
supplemented with appropriate boundary conditions dictated by the particular physics 
of the bounding membrane. Exact solutions for arbitrary n have only been found 
for certain highly symmeaic boundary geometries. However, in the strong electrolyte 
regime when G is assumed to be large compared to typical curvature of the membrane, 
it is possible to obtain results for more complex geometries and topologies [l]. 
Previously [3] solutions to the DebyeHuckel equation (1) were considered for an 
arbitrary curved d-dimensional manifold M with coordinates x p  and metric g,, 
bounded by a smooth ( d  - 1)-dimensional surface aM with coordinates Si. The 
boundary is embedded in M with the parametrization d‘((;) and the induced metric 
of the boundary is therefore Gi j  = g,,L3x”/i32’ azY/afj15=z(i). Solutions in this 
general framework were found with the use of an asymptotic expansion of the 
heat kernel for the Laplacian which enabled the free energy to be expressed as 
an expansion in the screening length K - I .  This reproduced earlier results obtained 
by Duplantier [l] for a three-dimensional Rat manifold M. In this article the free 
energy is related to heat content asymptotics which have been recently studied in the 
mathematics literature [ 4 4 ]  and elsewhere [7]. As a result the first four terms in the 
free energy expansion are obtained. 
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2. Surface free energy 

The free energy & may be written as a surface integral over the electrostatic potential 
q5 and the surface charge density of the membrane ji after using the Debye-Hiickel 
equation (1) 

where d S  = d d - ’ k a  is the surface element and a is a constant which depends on 
the boundary conditions considered. The surface charge density ,6 is given by 

B ( $ )  = -an4(z)laM = -n~(+f14(z)lr=r(&) (3) 

where n” is the inward pointing unit, normal to the surface. 
The two types of membrane considered here are: 

(i) Conducting membranes on which the field is fured, q5(z)IaM = @($), -giving 
rise to the Dirichlet problem for which we take 01 = -1/2 in (2) and consequently 

(ii) Insulating membranes on which the surface charge density a($) is k e d  so that the 
boundary condition for 4 is anq5(c)lsM = -a($), -giving rise to the Neumann 
problem for which we take a = 1/2 in (2) and consequently &N > 0. 
From standard potential theory the solution of (1) with boundary conditions (i) 

or (ii) may be expressed as a surface integral over the relevant Green function of the 
Debye-Hiickel operator 

E D  < 0. 

where G D ( z ,  z‘) is the Dirichlet-Green function satisfying GD(c,  z ’ ) \ ~ = ~ ( & ) -  - Oand 
G N ( z ,  z’) is the Neumann-Green function satisfying anGN(e, z‘)12=z(6)= 0. Then 
at least formally the free energy may be obtained directly from the above equations 
via equation (2) 

1 
dSdS’ @(Z) K ( 2 , i ’ )  @($’) 

(6) 
E D  = ZJ,, 

c 
K(*,s’) = ~ , G D ( Z , ~ ’ )  aAi2=r(e),z,=s(q 

The free energies may be obtained as large K expansions directly by employing the 
asymptotic form of the heat kernel Gvz(e, d; T )  as T - 0. The Green function for 
the Debye-Hiickel theory is related to this heat kernel by a Laplace transform 
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In the Dirichlet case (6) it is necessary to give a prescription for treating the non- 
integrable singularity of the kernel K(2,G') = a~GD(z,z~)~RIz==~G),~ ,=.( G,) for 
2 + 2' in a consistent fashion. A discussion of such a prescription, which makes use 
of the heat kernel &,2(x, 2'; T) corresponding to the operator V2, may be found in 
[3]t. This gives the regulated definition 

where I< = p j  Kij and A';?(s) is the extrinsic curvature of the boundary aM which 
may be defined by azp/a5? azv/a?jV,n, = -Kij .  The limit in (9) may be shown 
to exist after integration over suitably smooth test functions on aM.  

An extended DeWitt ansatz for the small T limit of Gv2(z, 2'; T) has been given 
which takes the form of an expansion for z FZ z' near the boundaiy. In [3] this 
expansion, valid for an arbitrary &dimensional curved manifold M ,  was used directly 
via equations (6)-(8) to obtain the first three terms of the large n expansion of the 
free energies. The results were found to be in agreement with previous calculations 
carried out by Duplantier el a1 [I] in the physically significant limit d = 3, M flat 
and arbitrary smoothly curved two-dimensional boundary a M .  

Substituting the relation (8)  into the free energy definitions (6) and (7) it is 
possible to express & in compact form. In the Dirichlet case in light of the regulation 
(9) one has 

-t L M d S  h'@' 

where ?$ is defined by 

In this prescription the non-integrable singularity of the Dirichlet case manifests itself 
in the limiting behaviour of ?$ as i + 0. In this limit ?$ N l/r3/' and the singular 
term in (10) cancels. For Neumann boundary conditions 

with 

t In that paper the second equation in (26) should be dRd = ( s i ~ B ) ~ - * d O d R d - ~ .  
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These definitions for ?$ and '?$ are special cases of a more general sesquilinear 
form on aM which will be defined later. 'Ib derive an expression for the free energy 
it is sufficient to obtain an asymptotic expansion of the quantities '?$ and F$ either 
directly from the heat kernel expansion itself or by some other means. 

In the following section fVz will be derived from what are called heat content 
asymptotics, which have been analysed using functorial methods in the mathematics 
literature [4-6l which are closely related to the short-time transient of diffusion 
outside a conducting body [SI. 

3. Heat content asymptotics 

Heat content asymptotics are concerned with the form of the double integral over 
the manifold of the heat kemcl Ga(z,z';7) associated with a general second-order 
elliptic operator A in the small r limit. 

where dv = ddz& is the volume element. Assuming the operator A acts on sections 
of an n dimensional vector bundle V over M then f and f' are dimension n vectors 
of smooth test functions on M .  

The heat kernel BA(","'; r )  satisfies the generalized heat equation 

( $ + A z ) G a ( z , z r ; ~ ) = O  G a ( ~ , d ; 0 ) = 6 d ( z , z ' ) .  (15) 

where 6 d ( z ,  z') = sd ( z  - z ' ) / g ( z ) ' l 2 .  This equation is supplemented with some 
appropriate linear boundary conditions expressed in terms of a linear operator B 
acting on sections of V so that 5, Ga(z, I'; T )  = 0, where the subscript z denotes 
operation on the argument E. If A is self-adjoint, as is assumed here, then Ga will 
also satisfy the boundary condition Ga(z,z'; T ) &  = 0, where the arrow indicates 
operating to the left. 

The most general form for the second-order elliptic operator A is assumed here 
to be 

A = - D z  4- X D z  = g " D p D y  D ,  = V, + A,.  (16) 

+ 

Here A ,  and X are matrix-valued vector gauge and scalar fields respectively which 
satisfy the symmetry relations A? = - A ,  and X +  = X .  Note also that 0, contains 
the usual Christoffel connection formed from S p y :  

The most general boundary conditions considered in this analysis are mixed 
boundary conditions, for which the operator B takes the form, for ((I) a section 
of the bundle V over M 

and correspondingly 
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where 0, = 8, - A,,, P(i) is a self-adjoint projection operator; P2 = P, 
'pt = p and @(&) is a matrix valued scalar surface field for which @t = q6 
and $ p  =: P@ = @. The limit P - 0 corresponds to pure Dirichlet boundary 
conditions and P i 1 leads to pure Neumann boundary conditions (Neumann 
boundary conditions including the linear term q6 are often referred to as Robin 
boundaly conditions). 

In the ssymptotic limit T -4 0 the heat content 7, may be expanded as a power 
series in the parameter T 

+ + 

In general the p, are expressed as the sum of volume and surface integrals 

where the pf = 0 for odd n and are independent of the choice of boundary 
conditions. Results for p, are given up to n = 3 for mixed boundary conditions in 
[5,7] and up to n = 4 for pure Dirichlet and n = 6 for pure Neumann boundary 
conditions in [6]. 

A more general definition for the purely surface quantity 'f,, that incorporates the 
special cases given in (11) and (13) is possible. Define a linear operator B' acting on 
sections of the vector bundle V so that 

Then if f, f' are n-dimensional vectors of test functions on a M ,  a natural definition 
for TA is 

which in the appropriate Dirichlet and Neumann ($ = 0) limits reduces to the 
definitions given in (11) and (13). The connection between 9, and 7, may be 
derived in this general framework and the limit of physical interest d = 3, M flat, 
A = -Vz and P i 0 , l  is only taken later to determine the free energy expansion 
through equations (10) and (l?). 

The quantities TA and TA are related by making use of Green's theorem, 
expressing A as a symmetric operator 



Equation (24) may be interpreted in two ways. On the one hand it provides an 
iterative procedure for generating the heat content asymptotic3 'TA given a suitable 
expansion for TA. On the other band given an expansion for 7, it is possible to 
derive directly such an expansion for 'f,. The latter approach is the one taken in this 
article since 7, has thus far been calculated to a higher order than TA. Following 
the second approach, equation (24) also gives an important consistency check on the 
asymptotic expansion of 'TA because all volume contributions on the left-hand side 
of the equation must cancel. In addition the derivatives of the test functions f and 
f' in the boundary terms must take on the required form dictated by the right-hand 
side of the equation. 

Using the previous results [6] for 'TA, specializing to pure Dirichlet and Neumann 
boundary conditions but retaining arbitrary dimension d and a curved manifold M ,  
the expansions for TA are derived. Writing TA as a power series in T 

then for Dirichlet boundary conditions the local coefficients b,[f,f](;) are then 
determined to be 

and for Neumann boundary conditions 
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%[f,fl= f?(76+$Wf’ (33) 

&f, f’] = - f’ $ K 2 +  $ICijK‘j + $Rnn + 276’ + 276K - X) f’ 

(34) 

fi l (  ( 
- (Dif)! B i P )  

P , [ f , f ’ ] = f ~ ( ( $ ~ ~ ~ ~ ’ k i ~ , i +  Q i < i j I < ’ j K + l ~ .  4 infn , K ’ j - L R . . I @ + L R  8 *I 4 nn K 

t l a  16 n R + ; + K ~  + 2+ K . .  ‘I ~ ‘ j  + ;@K + ;$R,,,, - $aRx 
- 1 X K - ; ( X $ + $ X ) + $ 3 + B 2 $ t  2 !h;fijK”)f’ 
- iK’i(D;f)t Djf’ - (Df)t (76 + 4 K) Bif’ 
+ ;((B’f)’ 5, p - f’ Fin Pf’). (35) 

In the above equations the coefficients on are expressed in general as a sum 
of contractions of various tensors associated with the manifold M, the boundary 
a M ,  the operator A and the boundary conditions. The tensor RFYgP is the 
Riemann tensor on M for which RnCnj = nhUazY/a2’  az+’/a2.l RpveplBM 
and R,, = GijRninj. Also hi is the induced covariant derivative acting on 
tensor fields on the boundary i3M and Fni = n”azY/a2iF,, lBM where FPv 
is the field strength tensor associated with the vector gauge field A@ defined by 
F,, = a ,A ,  - a,A, + [A,,A,]. The form of these results, derived from the heat 
content asymptotics ‘Tb with the use of the expansion 

AflaM = ( - n”n”a,a, + I<npt3, - b’bj + X) f l a M  (36) 
confirms the consistancy of the original expansion for TA. 

With this expansion for ‘fA it is now straightfonvard to derive an expansion for 
the free energy using equations (10) and (12). Specializing to dimension d = 3, a flat 
manifold M, and A = -V2 one finds for Dirichlet boundary conditions as K -+ 03 

1 1 d S  -1+ - K +  -(!IC;’- fi) E D - 5 L ~  {( 2K 4K2 

1 + - ( ~ 3  - ~ E Z K  + 62~) 
8K3 

and correspondingly for Neumann boundary conditions with II, = 0 

1 1 d S  1+ - K +  - ( 3 K 2 -  k) 
E N  &LM {( 2K 4K2 

1 + -(3K3 - 4kK + Vi<) 
8K3 
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where k = $jkij is the intrinsic scalar curvature of the boundary. In flat space 
k = K 2  - Ki jK’ j  and V’V)Kij = @K and for a two-dimensional boundaly 
kij = fkaij. If R, and R, are the two principle radii of curvature of the boundary 
then K = 1 /R ,  -I- 1/R, and = 2 / R ,  R,. The highestader terms O ( K - ~ )  in the 
integand of the above equations are new, while the other terms are in agreement 
with previous results [1,3]. 

. . ^ .  

Acknowledgments 

I am grateful for helpful conversations with H Osborn and P Gilkey. I thank the 
Royal Commission for the Exhibition of 1851 for an overseas scholarship. 

References 

[l] Duplantier B 1990 Physiia 168A 179 
Duplantier B, Goldstein R E, Romem-Rochin V and Pesd A 1990 Phys Rw. L m  65 508 

(21 Goldslein R E, Pesci A and Romero-Rochin V 1990 Phys. Rm A 41 5504 
Duplantier B 1991 Phys Rm Len 66 1555 

131 McAvity D and Osborn H 1992 .K Phys. A: Math Gen. 25 3287 
[4] van den Berg M and Gikey P B Preprint 
[SI Desjardins S and Gilkey P B Reprint 
[6] van den Berg M, Desjardins S and Gilkey P B Prepriflt 
(71 McAvity D 1992 Chs. Quanwn Grow 9 1983 
[SI Phillips C G and Jansons K M 1993 Proc. R Soc. A 428 431 


